9E Making Materials

1. About Ceramics		
	Range of hard, durable, non-	
Ceramics	metallic materials, generally	
	unaffected by heat.	
	e.g. glass, china	
	Hard, strong and brittle	
	High melting point and heat	
Ceramic	resistant	
Properties		
	electricity	
	Very unreactive	
	Hard, rigid, unreactive and can	
Glass	be transparent making it ideal	
	for windows, bottles and jars.	
	Rigid, strong when compressed	
Porcelain	and an electrical insulator	
	making it ideal to support	
	electrical cables on pylons. Heat resistant so used for brakes	
Ceramics		
Raw	in high-performance cars Clays are used for making	
Materials	pottery and sand for glass.	
Iviateriais	When heated, chemical	
	reactions occur forming new	
Using Clay		
osing ciay	crystals form and bind together	
	in the ceramic.	
	Dependent upon speed of	
Crystal	cooling. Slower cooling produces	
Size	larger crystals.	
Lattice	Grid-like structure formed by	
Structure	crystals.	
	Because atoms in a lattice	
Bonds	structure are joined by strong	
	bonds it explains why ceramics	
	are so stiff and have high melting	
	points.	

	2 Polymors	
	2. Polymers	
	Substances that have	
Polymer	molecules made of long	
· Orymer	chains of repeated groups of	
	atoms.	
	Small molecule joined with	
Monomer	the identical molecules to	
	form polymers.	
	Polymer from certain trees.	
Rubber	Soft and sticky when hot, but	
	hard and brittle when cold.	
	Rubber is heated with sulfur	
	to form cross-links between	
Vulcanisation	molecules making it harder	
	and tougher.	
Natural	Polymers found naturally.	
Polymer	e.g. rubber, DNA, proteins	
•	Polymers made in	
Synthetic	laboratories mainly using	
Polymers	raw materials from crude oil.	
Reaction that joins toge		
Polymerisation	monomers into chains.	
Forming Polyt	hene Diagram	
	one Blag. all.	
2		
&°%,	9	
Ethene	6	
molecules	polymensation	
8	Poly(ethene) /	
0	polythene molecule	
	Reactions that transfer	
Exothermic	energy to the surroundings.	
	e.g. polymerisation	
	Reactions that absorb energy	
Endothermic	from the surroundings.	
	in one surroundings.	
3. Composite Materials		
3. CC		
3. CC	Combinations of 2 or more	
Composite		
	Combinations of 2 or more	
Composite	Combinations of 2 or more materials with properties of each.	
Composite	Combinations of 2 or more materials with properties of	

with a clear polymer

Glass

Laminated	Laminated glass is rigid and	
Glass	hardwearing like glass but	
Properties	holds together under	
Froperties	impact.	
Making	Many are made by mixing	
Composite	fibres into a liquid resin	
Materials	which then sets hard.	
GRP	Composite of glass fibres in	
(Glass	a polyester resin. Used in	
Reinforced	boatbuilding as it is strong,	
Plastic)	light and slightly flexible.	
Concrete	Composite material made	
	from a mixture of cement,	
	sand, aggregate and water.	
Concrete	Strong, hardwearing and	
Properties	easy to mould into shapes.	
Aggregate	Crushed rocks	
Reinforced	In building works, steel rods	
Concrete	are also added to make it	
Concrete	even stronger.	
	Mainly calcium oxide which	
	is made by roasting calcium	
Cement	carbonate (limestone) in a	
Cement	thermal decomposition	
	reaction which is	
	endothermic	
Thermal Decomposition of Limestone		
Calcium carbonate → calcium oxide +		
carbon dioxide		
•		

4. Problems With Materials		
Finite	Limited resource that will	
	eventually run out.	
Fossil Fuels	Usually used in the	
	manufacture of materials.	
Incomplete	Produces carbon monoxide	
Combustion	and soot due to lack of oxygen	
Sulfur	Caused by sulfur impurities in	
Dioxide	fuel. Leads to acid rain.	
Nitrogen	Caused by high combustion	
Oxides	temperatures. Form acid rain.	

	Traps the Sun's energy,		
Carbon	increasing the greenhouse		
Dioxide	effect, leading to global		
	warming.		
Carbon	Technology used to remove		
Capture	carbon dioxide from waste		
Technology	gases given off.		
Toxic Substances	Pass along the food chain as		
	organisms eat smaller		
	animals.		
Non-	Materials that do not break		
Biodegradable	Biodegradable down naturally.		

5. Recycling Materials		
Recycling	Using the same materials again.	
Recycling Benefits	Reduce use of finite resources, save fuel/energy, reduce landfill use.	
Recycling Metals	Can be melted down and used again.	
Recycling Glass	Can be crushed, melted and moulded into new glass.	
Recycling Polymers	Difficult and expensive to separate different polymers so recycling levels are low.	
Recycling Paper	Water added, filtered, heated and mixed to form pulp, squeezed and dried to form paper.	
Recycling Concrete	Crushed using large machines and used aggregate.	

Lesson	Memorised?
1. About Ceramics	
2. Polymers	
3. Composite Materials	
4. Problems With	
Materials	
5. Recycling Materials	