Knowledge Organiser: Physics, CP12a Jesus arew in wisdom and stature" Luke 2:52 18 19 liquid change into a gas. the particles of a gas | 1 | The three states of matter are solid, liquid and gas. | |----|---| | 2 | In solids the forces of attraction hold particles close together, the particles vibrate but cannot move freely. Solids have a fixed shape, do not flow and usually cannot be compressed . | | 3 | In liquids the forces of attraction between particles is less than solids, the particles are free to move and can flow . Liquids take the shape of their container but usually cannot be compressed . | | 4 | In gases the particles are far apart and moving very fast. The forces of attraction between particles is very small. Gases are compressible and expand to fill their container. | | 5 | A change of state is where a substance changes the arrangement of particles e.g. solid to a liquid. Mass is conserved . This is physical change that can easily reversed. | | 6 | Density (ρ) is the mass of substance (number of particles) in a given volume. Units are Kg/m3. Solids are usually denser than liquids. | | 7 | Energy transferred to a substance is stored in the movement of the particles, called thermal energy . | | 8 | Temperature is a measure of how fast particles move in a substance. | | 9 | The amount of thermal energy stored in an object depends on its temperature, mass and the material it is made from. Specific heat capacity (c) is the amount of energy it takes to increase the Temperature of 1kg of the substance by 1°C. | | 10 | Heating curves show temperature changes over time. Where the temperature stays constant the energy being given to the substance is being used to overcome the forces between particles. | | 11 | Flat parts (plateaux) of a heating curve show a change of state occurring. | Temperature of a gas is a measure of the average kinetic energy (KE) of ## Knowledge Organiser: Physics, CP12b 9 lesus grew in wisdom and stature" Luke 2:52 | 1 | Pressure of a gas is due to the gas particles colliding (hitting) the sides of the container. | |----|---| | 2 | Heating a gas increases the KE of the gas particles, this increases the temperature of the gas. | | 3 | For a fixed mass of gas in a fixed volume, pressure increases when the temperature increases. As the gas particles move faster, hitting the sides of the container more, with more force. | | 4 | Pressure is force per unit area. Its units are pascals (Pa) 1Pa =1Nm ² | | 5 | Gas pressure decreases as the temperature of a gas decreases. Absolute zero is the temperature at which a gas would not exert a pressure as the particles are no longer moving. Absolute zero = -273°C or 0 K (kelvin) | | 6 | The kelvin temperature scale measures temperatures relative to absolute zero. Convert Celsius (C) to Kelvin (K) by subtracting 273. Convert from Kelvin to degrees Celsius add 273. | | 7 | Average kinetic energy of particles is directly proportional to the kelvin temperature of a gas. | | 8 | Decreasing the volume of a gas (fixed mass) at a fixed temperature will increase the pressure as there will be more collisions on the sides of the container. | | 9 | Increasing the volume of a gas (fixed mass) at a fixed temperature will decrease the pressure. | | 11 | To calculate the pressure or volume for gases of fixed mass at constant temperature we use: $P_1 \times V_1 = P_2 \times V_2$ P=pressure V = Volume | | 12 | When force is transferring energy to a gas e.g. using a bicycle pump, the energy is called work done . The energy transferred increases the energy of gas particles so increases the temperature of the gas. (the temperature of bicycle pump will go up as it is used). |