## Knowledge Organiser: Physics, CP4a

9

lesus grew in wisdom and stature" Luke 2:52

| 1  | Waves transfer energy.                                                                                                                                                 |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2  | A <b>longitudinal</b> wave <b>oscillates</b> in the same direction that energy is transferred ( <b>parallel</b> ).                                                     |   |
| 3  | An example of a <b>longitudinal</b> wave is <b>sound.</b> Longitudinal waves need <b>particles</b> to travel.                                                          |   |
| 4  | A <b>transverse</b> wave <b>oscillates perpendicular</b> (at a 90° angle) to the direction of energy transfer.                                                         |   |
| 5  | An example of a <b>transverse wave</b> is <b>microwaves</b> . Transverse waves <b>do not need particles</b> to travel.                                                 | L |
| 6  | All waves in the <b>electromagnetic spectrum</b> are examples of <b>transverse</b> waves.                                                                              |   |
| 7  | The <b>frequency</b> of a wave is the number of complete <b>waves</b> that pass a point <b>each second</b> .                                                           |   |
| 8  | The frequency of a wave is measured in hertz (Hz).                                                                                                                     |   |
| 9  | For sound waves, the frequency is related to the pitch. A <b>high frequency = high pitch sound.</b> A <b>low frequency = a low pitch sound.</b>                        |   |
| 10 | The <b>period</b> is the length of <b>time</b> it takes <b>one wave to pass</b> a given point.                                                                         |   |
| 11 | The wavelength is the distance from one peak (or trough) to the very next peak (or trough) and is measured in metres (m)                                               |   |
| 12 | The <b>amplitude</b> of a wave is the <b>maximum distance</b> of a point on the wave from it's <b>rest position</b> and is also measured in metres (m).                |   |
| 13 | For <b>sound waves</b> , the <b>amplitude</b> is related to <b>volume</b> . Greater amplitude means a louder volume.                                                   |   |
| 14 | The <b>velocity of a wave</b> is <b>how fast</b> the wave is travelling in it's direction of energy transfer. Waves travel at different speeds in different materials. |   |
| 15 | Speed = distance ÷ time                                                                                                                                                |   |
|    |                                                                                                                                                                        |   |



| 16 | Sound travels at 330 m/s in air                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------|
| 17 | Wave velocity (m/s) = frequency (Hz) x wavelength (m) $V = f x \lambda$                                                                  |
| 18 | Waves can <b>change direction</b> when they travel through a different medium with a different density. This is called <b>refraction</b> |
| 19 | When a wave 'bounces off' a surface this is called reflection.                                                                           |
| 20 | When a wave <b>passes through</b> a material and is not absorbed or reflected it is <b>transmitted</b> .                                 |
| 21 | When a wave transfers all of its energy to an object or material it is absorbed.                                                         |



## Knowledge Organiser: Physics, CP4b

Jesus grew in wisdom and stature" Luke 2:52

| _ |   |
|---|---|
|   | O |
| V | 7 |
|   |   |

| 1  | When a sound wave reaches a solid object, some of the energy it is transferring is reflected and some is transmitted through the solid or absorbed by it. (higher tier only)      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Sound waves cause the particles in a solid to vibrate and the vibrations can be passed on both as longitudinal and as transverse waves.                                           |
| 3  | In human ears, vibrations caused by sound waves are passed on through parts of the ear until they are detected and and converted to electrical impulses that travel to the brain. |
| 4  | The eardrum is a thin membrane that can vibrate due to sound waves.                                                                                                               |
| 5  | The cochlea is found inside the ear and is a coiled tube containing liquid.                                                                                                       |
| 6  | A healthy cochlea can detect sounds from 20Hz to 20000Hz.                                                                                                                         |
| 7  | Ultrasound is sound made by waves with a frequency greater than 20000Hz                                                                                                           |
| 8  | Ultrasound scans can be used to make images of things inside the body.                                                                                                            |
| 9  | Other uses of ultrasound include sonar, cleaning and treatment of medical conditions such as kidney stones.                                                                       |
| 10 | Infrasound is sound made by waves with a frequency less than 20Hz.                                                                                                                |
| 11 | Infrasound waves travel further than higher frequency waves before they become to faint to detect.                                                                                |
| 12 | Natural events such as volcanic eruptions and earthquakes create infrasound waves.                                                                                                |
| 13 | The energy released by an earthquake can travel through the Earth as a longitudinal P wave or as a transverse S wave.                                                             |



