Knowledge Organiser: Physics, CP2a 9 Jesus grew in wisdom and stature" Luke 2:52 | 1 | A resultant force is the sum of all the forces acting on an object. | |----|---| | 2 | A free body diagram represents all of the forces acting on one object and the forces are represented as arrows, the size of the arrow represents the size of the force and the direction of the arrow represents the direction the force is acting in. | | 3 | To find the resultant force when two forces are acting on an object in opposite directions you subtract the smaller force from the larger force. | | 4 | To find the resultant force when two forces are acting on an object in the same direction you add the forces together. | | 5 | Newton's first law of motion states that unless an external force acts on the object then a moving object will continue to move at the same speed and direction and a stationary object will remain at rest. | | 6 | A centripetal force can be any one of several different forces that keep an object moving in a circle. (higher tier only) | | 7 | Examples of centripetal force include gravity, friction and tension. | | 8 | The gravitational field strength on Earth is 10 N/kg | | 9 | Weight (N) = mass (kg) x gravitational field strength (N/kg). W = m x g | | 10 | Weight is a force so the standard units of measurement for weight are Newtons (N). | | 11 | Newton's second law of motion states that the acceleration in the direction of a resultant force depends on The size of the force (for the same mass, the bigger the force the bigger the acceleration) The mass of the object (for the same force the more massive the object is the smaller the acceleration) | | 12 | Force (N) = mass (kg) x acceleration (m/s 2). F = m x a | - Inertial mass of an object is the force on it divided by the acceleration the force produces. - Newton's third law of motion states that for every action force there is an equal and opposite reaction force. - 15 Newton's third law applies to forces acting on **two separate objects**. - 16 Momentum is a measure of how difficult it is to stop an object that is moving. - Only objects that are moving have momentum. Objects that are **not moving** have a **momentum of zero**. - 18 Momentum (kg m/s) = mass (kg) x velocity (m/s). P = m x v - Momentum is conserved (this means total momentum before = total momentum after). This applies when we look at momentum in collisions. ## Knowledge Organiser: Physics, CP2b Jesus grew in wisdom and stature" Luke 2:52 14 | _ | | |---|--------------| | | | | | \mathbf{a} | | | ン | | | | | | | which is 4 (quadrupled). - The force in a road collision depends on the rate of change of momentum. This can be shown as $F = (mv mu) \div t$ - Crumple zones and air bags increase the time taken for the momentum of the driver to decrease which produces a smaller impact force.