

Knowledge Organiser: Physics, Astronomy a

lesus arew in wisdom and stature" Luke 2:52

1	The geocentric model of the solar system proposed by Ptolemy (an ancient Greek astronomer) puts Earth at the centre of the solar system.					
2	The heliocentric model of the solar system puts the sun at the centre of the solar system and was first suggested by Copernicus (a Polish astronomer)		Cornets W = $m \times g$ Weight (N) = Mass (kg) × Gravitational field strength (N / kg) m g			
3	The heliocentric model of the solar system is also supported by Jupiter's moons orbiting the planet Jupiter, discovered by Gallileo (an Italian astronomer).					
4	The planets that make up our Solar system are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.					
5	Mercury is the planet closest to the sun in our Solar system.					
6	Neptune is the planet furthest from the sun in our Solar system.					
7	Our Solar system also contains dwarf planets, asteroids and comets.					
8	Today telescopes in orbit around the Earth give much clearer images than telescopes on the ground because they are outside of the Earth's atmosphere.					
9	Different types of telescope are used to detect different types of electromagnetic waves.					
10	Your weight is the force of gravity acting on you, $W = m \times g$, where g is the gravitational field strength on the surface of a body or object such as Earth.		geo	geostationary		
11	The planets moons and other bodies in our solar system have different gravitational field strength.		15	A geostationary orbit means that the satellite repoint on the Earth.		
12	A satellite is an object that orbits another. Satellites can be natural (like		16	16 Geostationary satellites are used for broadcastin		
12	the moon) or artificial (like the international space station).	17	17	Satellites in low Earth orbits need to move at mu 17 overcome the increased pull of the Earth's gravit		
13	Artificial satellites have different uses depending on their orbits.		17	satellites move at around 7500 m/s		
14	Highly elliptical orbiting satellites are used for communication in parts of the Earth near the poles.		18	A satellite in polar orbit will eventually pass over		

Knowledge Organiser: Physics, Astronomy b

1	Stars begin life as a nebula. This is a cloud of dust and gas (75% hydrogen).
2	In the nebula it becomes more hot and dense as it's gravitational pull increases and it attracts more mass. It then becomes a protostar.
3	When the temperature and pressure in the centre of the protostar become high enough they force hydrogen nuclei together to form helium. This is known as a fusion reaction.
4	When the outward pressure from the hot gas is balanced by the inward pull of gravity the star is now a main sequence star and is stable.
5	Stars spend most of their life in the main sequence stage. Nuclear fusion is constantly taking place.
6	The next stage of a stars life depends on the mass of the star.
7	A star that is a similar size to our sun will then become a red giant and eventually a white dwarf.
8	In a red giant the core of the star is not hot enough to withstand gravity and it collapses, this causes the outer layers to expand.
9	The red giant eventually throws off a shell of gas and the rest of the star is pulled together and collapses to form a white dwarf.
10	No fusion reaction happen in a white dwarf.
11	A white dwarf gradually cools to become a black dwarf.
12	Stars that are more massive than our sun follow a different path after their main sequence.
13	After their main sequence, more massive stars become red supergiants.
14	After he red supergiant stage the star collapses and then explodes in a supernova where the outer layers of the supergiant are cast off and expand outwards.
15	What happens after the supernova also depends on the mass of the star.

- Only the most massive stars then go on to become a black hole where 16 the gravitational pull is so strong that not even light can escape.
- Those supernova that are not massive enough to become a black hole 17 form a small, very dense star called a neutron star.

Knowledge Organiser: Physics, Astronomy c

esus grew in wisdom and stature" Luke 2:52

1	The Doppler effect is a change in the pitch of a sound wave due to the source of the sound moving.
2	As the sound travels towards you the waves are compressed which produces a shorter wavelength.
3	Shorter wavelength = higher frequency and with sound a higher frequency produces a higher pitch noise.
4	As the sound travels away from you the waves are stretched which produces a longer wavelength.
5	Longer wavelength = lower frequency and with sound a lower frequency produces a lower pitch noise.
6	The same effect happens to visible light from distant galaxies. This effect is called red-shift.
7	If the light is moving towards us the waves are compressed and we see a shift in the visible light to the blue end of the spectrum.
8	If the light is moving away from us the waves are stretched and we see a shift in the visible light to the red end of the spectrum.
9	Redshift can be seen on absorption spectra where black lines represent the shift in visible light.
10	The further away a galaxy is, the greater its red-shift and so the faster it is moving away from us.
11	Red shift provides evidence that the universe is expanding and supports both the Big Bang theory and the Steady State theory
12	The Big Bang theory states that universe started out as a tiny point of concentrated energy 13.8 billion years ago, that it expanded from this point and that it is still expanding.
13	Steady State theory states that the universe has always existed and is expanded and that new matter is continuously created as it expands so density remains the same.

- CMBR stands for cosmic microwave background radiation. You may sometimes see it shortened to just CMB.
 CMBR is the remaining radiation released in the Big Bang.
- 16 CMBR provides evidence for the Big Bang theory only and cannot be explained by Steady State theory.
- Because there is more evidence supporting the Big Bang theory, this is accepted as our current theory of hoe the universe began.