

Knowledge Organiser: Biology, CB8

Jesus grew in wisdom and stature" Luke 2:52

1	Living organisms obtain the substances they require for life and get rid of waste products by diffusion e.g Oxygen, minerals, dissolved food, carbon dioxide and urea.	
2	Single celled organisms do not need transport systems as they have a large surface area to volume ration	
3	Multi-cellular organisms need a mass transport system because they have a small surface area.	
4	In humans, the mass transport system is the blood and the gas exchange surface is the lungs	
5	The heart pumps low oxygen/high carbon dioxide containing blood to the lungs. In the lungs, oxygen and carbon dioxide are exchanged in the alveoli.	
6	Alveoli have a very good blood supply, thin membranes and a large surface area to volume ratio for maximum diffusion	
7	Blood is a tissue containing plasma in which red blood cells, white blood cells and platelets are suspended	
8	There are three types of blood vessels Arteries- Carry blood away from the heart Veins- carry blood towards the heart Capillaries connect arteries and veins	
9	The heart is an organ that pumps blood around the body in a double circulatory system	
10	The right ventricle pumps blood the lungs where gas exchange takes place	

The **left ventricle** pumps blood under high pressure around the rest of the body and back to the right side of the heart

Knowledge Organiser: Biology, CB8b

Jesus grew in wisdom and stature" Luke 2:52

1	Every living cell needs energy . This energy is released from food (glucose) by a series of chemical reactions called respiration
2	Cellular respiration (aerobic respiration) happens inside mitochondria and is an exothermic reaction. The energy released is used inside cells for metabolic processes
3	During hard exercise muscles switch to anaerobic respiration to transfer energy. Lactic acid is produced.
4	During long periods of vigorous exercise, muscles become fatigued and stop contracting efficiently
5	After exercise the lactic acid must be combined with oxygen to convert it to carbon dioxide. The amount of oxygen needed is called the oxygen debt .

The word equation which represents aerobic respiration is:

The balanced symbol equation which represents aerobic respiration is:

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$$

	Aerobic respiration	Anaerobic respiration in animal cells
Oxygen	Required	Not required
End products	Carbon dioxide and water	Lactic acid
Oxidation of glucose	Complete	Incomplete
Efficiency of energy transfer	High	Low