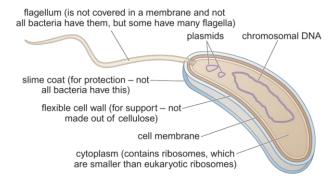
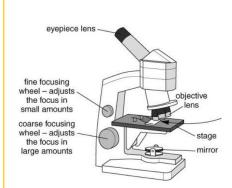
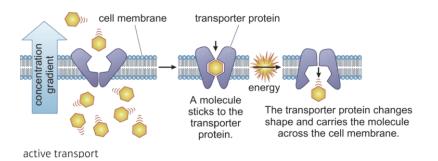
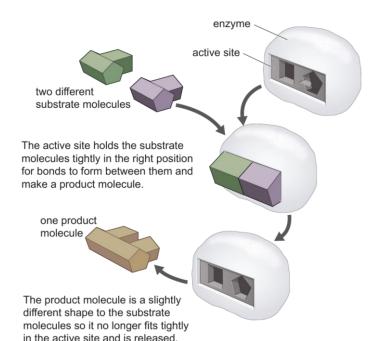

Knowledge Organiser: Biology, SB1a


Jesus grew in wisdom and stature" Luke 2:52



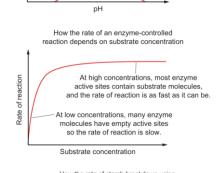



Knowledge Organiser: Biology, SB1b

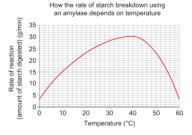
Jesus grew in wisdom and stature" Luke 2:52

1	Diffusion is the movement of particles from an area of high concentration to an area of low concentration
2	Osmosis is the movement of water particles from an area of high concentration of water particles to an area of low concentration of water particles across a semi permeable membrane
3	The difference in concentration between two areas is known as the concentration gradient
4	Active transport is the movement of particles against the concentration gradient and requires energy to do so
5	Diffusion and osmosis are passive process which means they do not require energy to take place.
6	Active site is the space in an enzyme where the substrate fits during an enzyme catalysed reaction
7	When the shape of an enzymes active site has changed shape due to heat or ph so will no longer fit the substrate, we say it is denatured
8	Lock and key model describes the way an enzyme catalyses a reaction when a substrate fits withing the active site of the enzyme

Enzyme	Where found	Reaction Catalysed
Amylase	Saliva and small intestine	Breaking down starch into small sugars such as maltose
Catalase	Most cells but especially liver cells	Breaking down hydrogen peroxide that is made in many cells reactions into water and oxygen
Starch synthase	Plants	Synthesis of starch from glucose
DNA polymerase	Nucleus	Synthesis of DNA from its monomers



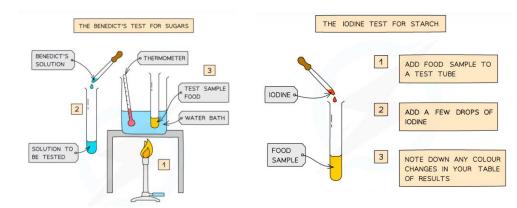
enzyme substrate molecule extreme conditions shape of active site has changed substrate will no longer fit denatured enzyme How the rate of an enzyme-controlled reaction depends on pH

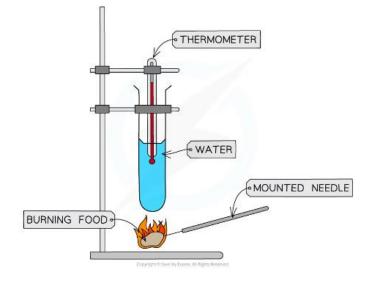

optimum pH

At pHs below and above the optimum, the shape of the active site is affected and so the

enzyme does not work so well.

Rate of reaction





Knowledge Organiser: Biology, SB1c Separate content

Jesus grew in wisdom and stature" Luke 2:52

Food Test	Colour of reagent	Positive test result	Negative test result
lodine for starch	orange-brown	blue-black	orange-brown (no change)
Benedict's for sugar	light blue	green to brick-red	light blue (no change)
Ethanol for lipid	colourless	cloudy emulsion	colourless (no change)
Biuret for protein	blue	lilac-purple	blue (no change)

- A larger increase in water temperature indicates a larger amount of energy contained by the sample
- We can calculate the energy in each food sample using the following equation:

Energy transferred (J) =

(mass of water (g) x 4.2 x temperature increase (°C)) ÷ (mass of food (g))